top of page
8B59958F-11EA-4794-BF43-C5D060F0391A_edited.jpg

Publications

Screenshot 2024-11-08 at 1.18.43 PM.png

26

Glycopolymer-Mediated Selective Separation of Middle Rare Earth Elements

Jeon, S., Odom, T.L., Williams, C.A., and C.E. Callmann*

Angewandte Chemie 2024

DOI: 10.1002/anie.202417505

Screenshot 2024-01-31 at 1.35.04 PM.png

22

Biomacromolecule-Tagged Nanoscale Constructs for Crossing the Blood-Brain Barrier

Odom, T.L., LeBroc, H.D., and C.E. Callmann*

Nanoscale 2024

DOI: doi.org/10.1039/D3NR06154J

ACSCentSci.jpeg

23

Bioinspired, Carbohydrate-Containing Polymers Efficiently and Reversibly Sequester Heavy Metals

Jeon, S., Haynie, T., Chung, S., and C.E. Callmann*

ACS Central Science 2024

DOI: 10.1021/acscentsci.4c01010

TOC Biomac.jpg

24

Systematic Evaluation of Macromolecular Carbohydrate-Lectin Recognition Using Precision Glycopolymers

Williams, C.A., Stone, D.J., Joshi, S.Y., Yilmaz, G., Farzeen, P. Jeon, S., Harris-Ryden, Z., Becer, C.R., Deshmukh, S.A., and C.E. Callmann*

Biomacromolecules 2024

DOI: 10.1021/acs.biomac.4c01245

Screenshot 2024-11-08 at 1.15.34 PM.png

25

Synthesis and Evaluation of Biomimetic, Heparan Sulfate-Functionalized Glycopolymers for Selective Protein Binding

Wells, C.K., Williams, C.A., Langan, A.E., Haynie, T., Seeley, E.H., and C.E. Callmann*

ACS Applied Polymer Materials 2024

DOI: 10.1021/acsapm.4c02557

Prior to UT-Austin

Screenshot 2023-07-13 at 10.10.40 PM.png

21

In Vivo Behavior of Ultrasmall Spherical Nucleic Acids

Callmann, C.E., Vasher, M.K., Das, A., Kusmierz, C.D., and C.A. Mirkin*

Small 2023

DOI: 10.1002/smll.202300097

Screenshot 2023-07-13 at 10.23.30 PM.png

20

Transferrin Aptamers Increase the In Vivo Blood–Brain Barrier Targeting of Protein Spherical Nucleic Acids

Kusmierz, C.D., Callmann, C.E., Kudruk, S., Distler, M.E., and C.A. Mirkin

Bioconjugate Chemistry 2023

DOI: 10.1021/acs.bioconjchem.2c00389

Zitin.jpeg

15

Synergistic Immunostimulation through the Dual Activation of Toll-like Receptor 3/9 with Spherical Nucleic Acids

Huang, Z.N., Callmann, C.E., Cole, L.E., Wang, S., and C.A. Mirkin*

ACS Nano, 2021

DOI: 10.1021/acsnano.1c03093

am1c12852_0007.gif

16

Controlling the Biological Fate of Liposomal Spherical Nucleic Acids Using Tunable Polyethylene Glycol Shells

Wang, Z., Callmann, C.E., and C.A. Mirkin*

ACS Applied Materials and Interfaces, 2021

DOI: 10.1021/acsami.1c12852

Screen Shot 2022-05-26 at 4.27.00 PM.png

17

Rational Vaccinology: Harnessing Nanoscale Chemical Design for
Cancer Immunotherapy

Huang, Z., Callmann, C.E., Wang, S., Vasher, M.K., Evangelopoulos, M., Petrosko, S.H., and C.A. Mirkin*

ACS Central Science, 2022

DOI: 10.1021/acscentsci.2c00227

Screen Shot 2022-08-02 at 2.23.58 PM.png

18

Tumor-Associated Enzyme-Activatable Spherical Nucleic Acids

Zhang, W., Callmann, C.E., Meckes, B., and C.A. Mirkin*

ACS Nano 2022

DOI: 10.1021/acsnano.2c03323

Screen Shot 2022-09-03 at 12.13.11 PM.png

19

Disrupting the Interplay between Programmed Cell Death Protein 1 and Programmed Death Ligand 1 with Spherical Nucleic Acids in Treating Cancer

Chou, L., Callmann, C.E., Dominguez, D., Zhang, B.*, and C.A. Mirkin*

ACS Central Science 2022

DOI: 10.1021/acscentsci.2c00717

toc.jpg

14

Impact of Liposomal Spherical Nucleic Acid Structure on Immunotherapeutic Function

Callmann, C.E., Kusmierz, C.D., Dittmar, J.W., Broger, L., and C.A. Mirkin*

ACS Central Science, 2021

DOI: 10.1021/acscentsci.1c00181

Screen Shot 2020-07-15 at 2.16.40 PM.png

13

Tumor Cell Lysate-Loaded Immunostimulatory Spherical Nucleic Acids as Therapeutics for Triple-Negative Breast Cancer

Callmann, C.E., Cole, L.E., Kusmierz, C.D., Huang, Z., Horiuchi, D, and C.A. Mirkin*

Proceedings of the National Academy of Sciences, 2020

DOI: 10.1073/pnas.2005794117

EYoohm4X0AA1k56.jpg

12

Paclitaxel-Terminated Peptide Brush Polymers

Zhu, J., Sun, H., Callmann, C.E., Thompson, M.P., Battistella, C., Proetto, M.T., Carlini, A.S., and N.C. Gianneschi*

Chemical Communications, 2020

DOI: 10.1039/C9CC10023G

Screen Shot 2020-05-14 at 10.39.46 PM.png

11

Defining the Design Parameters for In Vivo Enzyme Delivery Through Protein Spherical Nucleic Acids

Kusmierz, C., Bujold, K., Callmann, C.E., and C.A. Mirkin*

ACS Central Science, 2020

DOI: 10.1021/acscentsci.0c00313

Screen Shot 2020-05-14 at 10.34.06 PM.png

10

Poly(peptide): Synthesis, Structure, and Function of Peptide–Polymer Amphiphiles and Protein-like Polymers

Callmann, C.E., Thompson, M.P., and N.C. Gianneschi*

Accounts of Chemical Research, 2020

DOI: 10.1021/acs.accounts.9b00518

Screen Shot 2020-05-14 at 10.27.16 PM.png

9

Sequence Multiplicity within Spherical Nucleic Acids

Huang, Z., Cole, L.E., Callmann, C.E., Wang, S., and C.A. Mirkin*

ACS Nano, 2020

DOI: 10.1021/acsnano.9b08750

Screen Shot 2020-05-14 at 10.22.14 PM.png

8

Antitumor Activity of Octadecanedioic Acid-Paclitaxel Complexed with Human Serum Albumin

Callmann, C.E., LeGuyader, C.L., Burton, S., Thompson, M.P., Hennis, R.H., Barback, C.V., Henrickson, N.M., Chan, W.C., Jeremko, M.J., Yang, J., Garcia, A., Burkart, M.D., Gilson, M., Momper, J.D., Bertin, P.A., and N.C. Gianneschi*

Journal of the American Chemical Society, 2019

DOI: 10.1021/jacs.9b04272

Screen Shot 2020-05-14 at 10.15.13 PM.png

7

Delivery of Immunotherapeutic Nanoparticles to Tumors via Enzyme-Directed Assembly

Battistella, C.†, Callmann, C.E.†, Thompson, M.P., Yao, S., Hayashi, T., Carson, D.A., and N.C. Gianneschi*

Advanced Healthcare Materials, 2019

DOI: 10.1002/adhm.201901105

Screen Shot 2020-05-14 at 10.03.27 PM.png

6

Tumor Retention of Enzyme-Responsive Pt(II) Drug-Loaded Nanoparticles Imaged by NanoSIMS and Fluorescence Microscopy

Proetto, M.P., Callmann, C.E., Cliff, J., Szymanski, C.J., Hu, D., Evans, J.E.; Orr, G., Howell, S.B., and N.C. Gianneschi*

ACS Central Science, 2018

DOI: 10.1021/acscentsci.8b00444

Screen%20Shot%202020-05-14%20at%209.58_edited.jpg

5

Micellar Thrombin-Binding Aptamers: Reversible Nanoscale Anticoagulants

Roloff, A., Carlini, A.S., Callmann, C.E., and N.C. Gianneschi*

Journal of the American Chemical Society, 2017

DOI: 10.1021/jacs.7b07799

Screen%20Shot%202020-05-14%20at%209.53_edited.jpg

4

Enzyme-Responsive Nanoparticles for the Treatment of Disease

Callmann, C.E. and N.C. Gianneschi*

Methods in Molecular Biology, 2017

DOI: 10.1007/978-1-4939-6840-4_15

Screen%20Shot%202020-05-14%20at%209.47_edited.jpg

3

Enzyme-Responsive Nanoparticles Release Cargo Upon Exposure to Matrix Metalloproteinase and Reactive Oxygen Species

Daniel, K.B.†, Callmann, C.E.†, Cohen, S.M.*, and N.C. Gianneschi*

Chemical Communications, 2016

DOI: 10.1039/c5cc09164k

Screen%20Shot%202020-05-14%20at%209.38_edited.jpg

2

Therapeutic Enzyme-Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors

Callmann, C.E., Barback, C.V., Thompson, M.P., Hall, D.J., Mattrey, R.F., and N.C. Gianneschi*

Advanced Materials, 2015

DOI: 10.1002/adma.201501803

Screen%20Shot%202020-05-14%20at%209.27_edited.jpg

1

Stimuli-Responsive Nanomaterials for Biomedical Applications

Blum, A. P., Kammeyer, J. K.†, Rush, A. M.†, Callmann, C. E., Hahn, M. E., and N.C. Gianneschi*

Journal of the American Chemical Society, 2015

DOI: 10.1021/ja510147n

bottom of page